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3:2 equal amp. concurrent 3:2 inv. amp. concurrent

2.1 equal amp. counterc.

3.1 cqual amp. concurrent

amp. concurrent

3:1 inv. amp, concurrent

5.1 inv. amp concurrent

Harmonic patterns _from Sir Thomas Bazley’s Index to the Geometric Chuck (1873),
showing concurrent and countercurrent phases with equal and inverted amplitudes.



INTRODUCTION

Many of the drawings in this book were produced by a simple
scientific instrument known as a harmonograph, an invention
attributed to a Professor Blackburn in 1844. Toward the end
of the nineteenth century these instruments seem to have been
in vogue. Victorian gentlemen and ladies would attend soirées
or conversaziones, gathering around the instruments and
exclaiming in wonder as they watched the beautiful and
mysterious drawings appear. A shop in London sold portable
models that could be folded into a case and taken to a party.
There may well be some of these instruments hidden in attics
all over the world.

From the moment I first saw drawings of this kind I was
hooked. Not only because of their strange beauty, but be-
cause they seemed to have a meaning—a meaning that became
clearer and deeper as I found out how to make and operate
a harmonograph. The instrument draws pictures of musical
harmonies, linking sight and sound.

However, before going any further I feel I should issue a health
warning. If you too are tempted to follow this path, beware! It
is both fascinating and time-consuming.

I have acknowledged my debt to the book Harmonic Vibrations.
It was coming across this book in a library soon after the end of
the second world war that introduced me to the harmonograph.
Seeing that the book had been published by a firm of scientific
instrument makers on Wigmore Street I went one day to see if



they were still there. They were, though reduced merely to
making and selling projectors. I went into the shop and held up
my library copy of the book for the elderly man behind the
counter to see.

“Have you any copies of this book left?” I asked him.

He stared at me as though I were some sort of ghost and
shuffled away without a word, returning in a few minutes with
a dusty, unbound copy of the book.

“That’s marvelous,” I said, “how much do you want for it?”

“Take it,” he said, “it’s our last copy, and we’re closing down
tomorrow.”

So I have always felt that someday I must write this book.

Girton, 2002
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THE DISCOVERY OF HARMONY

on passing a blacksmith

To understand what the harmonograph does we need first to
glance at the elements of musical theory.

Pythagoras, some 2,500 years ago, is credited with discovering
that the pleasing experience of musical harmony comes when the
ratio of the frequencies consists of simple numbers. A tale tells
how while taking a walk he passed a blacksmith’s shop. Hearing
familiar harmonies in the ringing tones of the hammers on the
anvil, he went in and was able to determine it was the weights
of the hammers that were responsible for the relative notes.

A hammer weighing half as much as another sounded a note
twice as high: an octave (2:1). A pair weighing 3:2 sounded
beautiful, a fifth apart. Simple ratios made appealing sounds.

The pictures opposite show experiments the philosopher went
on to make (from Gafurio’s Theorica Musice, 1492), as he found
that all simple musical instruments work in much the same way,
whether they are struck, plucked, or blown.

Deeply impressed by this link between music and number,
Pythagoras drew the metaphysical conclusion that all nature
consists of harmony arising from number, precursor to the
modern physicist’s assumption that nature conforms to laws
expressed in mathematical form. Looking at the pictures you
will see that in every example—hammers, bells, cups, weights, or
pipes—the same numbers appear: 16, 12, 9, 8, 6, and 4. These
numbers can be paired in quite a few ways, all of them pleasant
to the ear, and, as we shall see, also pleasant to the eye.






THE MONOCHORD OF CREATION

a singular string theory

There are seven octaves in the keyboard of a piano and nearly
eleven in the total range of sound heard by the average person.
The highest note of each octave has a frequency twice that of the
first so the frequencies increase exponentially, on a scale begin-
ning at 16 oscillations per second (16 Hertz) with the lowest
organ note and ending with about 20,000 per second. Below 16
Hertz we experience rhythm. A range of ten octaves represents
about a thousandfold increase in frequency (2! = 10°).

There is a hint here of what we can think of as the great
monochord of the universe, also on a scale, this time stretching
from a single quantum fluctuation at the bottom, to the
observable universe at the top, passing through the various
“octaves” of atom; molecule; quantities of solid, liquid, and
gaseous matter; creatures great and small; planets; stars; and
galaxies. Here too the scale is exponential, but usually measured
in powers of ten, and covering a range of more than 10*.

Robert Fludd’s seventeenth-century engraving (opposite) tells a
similar story: The musical scale follows the same exponential
principle underlying the design of the universe.
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OVERTONES AND INTERVALS

harmonic ratios in and outside the octave

How are musical scales constructed? Listen very carefully as you
pluck a string and you will hear not only the main note, or tonic,
but also a multitude of other harmonics, the overtones.

The principle is one of harmonic resonance, and affects not only
strings and ringing hammers, but columns of air and plates too.
Touching a string with a feather at the halfway or third point, as
shown below, encourages regularly spaced stationary points, called
nodes, and an overtone can be produced by bowing the shorter
side. The first three overtones are shown opposite (top).

Musicians, however, need notes with intervals a little closer
together than the overtone series, which harmonize within an
octave. The lower diagram opposite shows the overtone series
on the left, and the intervals developing within the octave on the
right, in order of increasing dissonance, or complexity.

“All discord harmony not understood” wrote Alexander Pope.
The brain seems to grasp easily the relationships implicit in
simple harmonies, an achievement bringing pleasure; but with
increasing complexity it falters and then fails, and failure is always
unpleasant. For most people enjoyment fades as discord increas-
es, toward the end of the series opposite. And, as we shall see,
that is where the harmonograph drawings fade too.
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WHOLE TONES AND
HALFTONES
the fifth and the octave get their names

Pythagoras’s hammers hide a set of relationships dominated by
octaves (2:1), fifths (3:2), and fourths (4:3). The fifth and fourth
combine to make an octave (3:2x4:3=2:1), and the difference
between them (3:2+4:3) is called a whole tone, value 9:8.

A natural pattern quickly evolves, producing seven discrete
nodes (or notes), separated by two halftones and five whole tones,
like the sun, moon, and five planets of the ancient world.

The fifth (3:2) naturally divides into a major third and minor
third (3:2=5:4x6:5), the major third basically consisting of two
whole tones, and the minor third of a whole tone and a halftone.
The thirds can be placed major before minor (to give the major
scale shown in the third row, opposite) or in other ways.

Depending on your harmonic moves, or melody, different
tunings appear, for example two perfect whole tones (9:8x9:8=
81:64) are not in fact the perfect major third 5:4, but are slightly
sharp as 81:80 (the syntonic or synoptic comma, the Indian sruti, or
comma of Didymus), which will be discussed more later.

Simple ratios, the octave and fifth, have given rise to a basic
scale, a pattern of whole tones and halftones and, depending on
where in the sequence you call home, seven modes are possible.

4 6 ;8109 ;12 16
\‘T&:A:ﬂl : Tc::Asrrh ¢

Whole tone
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tonic second third  fourth fifth sixth seventh  octave
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The basic manifestation of the scale. In Pythagorean tuning all whole tones are exactly 9:8, creating the leimma
halftone of 256:243 between its major third (81:64) and the perfect fourth (4:3). The sixth and the seventh are
defined as successive perfect whole tones above the fifth.

In Diatonic tuning the major third is perfect at 5:4, which squeezes the second whole tone to 10:9 (a minor
whole tone), leaving 16:15 as the diatonic halftone up to the fourth. The diatonic sixth is 5:3, a major third
above the fourth, a minor whole tone above the fifth. The diatonic seventh (15:8) is a major whole tone above

that, a major third above the fifth and a halftone below the octave.
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ARRANGING THE HARMONIES

the power of silence

The simple ratios of the primary overtones and undertones can
be plotted on an ancient grid known as a lambdoma (opposite, top),
after the greek letter A. Some intervals are the same (8:4=6:3=
4:2=2:1), and if lines are drawn through these it quickly
becomes apparent that the identities converge on the silent and
mysterious ratio 0:0, which is outside the diagram.

A further contemplative device used by the Pythagoreans was
the Tetraktys, a triangle of ten elements arranged in four rows
(1+2+3+4=10). The basic form is given opposite, lower left,
the first three rows producing the simple intervals. In another
lambdoma (opposite, lower right), numbers are doubled down the
left side and tripled down the right, creating tones horizontally
separated from their neighbors by perfect fifths. After the trinity
(1, 2, and 3) notice the numbers produced, 4, 6, 8, 9, 12, and
then look again at the picture on page 5.

Below are interval positions on a monochord.




Pythagorean and medieval tunings, called 3-limit, recognized no true intervals except for ratios involving
1, 2, and 3. The lambdoma below, right expresses this numerically as any element relates to any
neighbor by ratios only involving 1, 2, and 3, so we can move around by octaves and fifths. Squares
(4=22, 9=3%) and cubic volumes (8=23, 27=3%) also appear.  Add further rows and the numbers for
the Pythagorean scale soon appear—1 9:8 64:81 4:3 3:2 27:16 16:9 2:1. This has four fifths
and five fourths but no perfect thirds or sixths. These came later with the diatonic scale and its perfect
thirds (6:5:4) as polyphony a




L1SSAJOUS FIGURES

sound made shape

In the mid-nineteenth century, Jules Lissajous, a French
mathematician, devised an experiment: He found that if a small
mirror was placed at the tip of a tuning fork, and a light beam
was aimed at it, the vibration could be thrown onto a dark
screen. When the tuning fork was struck, a small vertical line
was produced, and if quickly cast sideways with another mirror
it produced a sine wave (below).

Lissajous wondered what would happen if instead of casting
the wave sideways he were to place another tuning fork at right
angles to the first to give the lateral motion. He found that
tuning forks with relative frequencies in simple ratios produced
beautiful shapes, now known as Lissajous figures.

On the screen (opposite, top), we see the octave (2:1) as a figure
eight, and below it various phases of the major and minor third.
These were some of the first fleeting pictures of harmony, which
were doubtless familiar to Professor Blackburn when he devised
the harmonograph.
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THE PENDULUM

keeping time

A tundamental law of physics (in one formulation) states that left
to itself any closed system will always change toward a state of
equilibrium from which no further change is possible.

A pendulum is a good example. Pulled off center to start, it is
in a state of extreme disequilibrium. Released, the momentum
of its swing carries it through to nearly the same point on the
other side. As it swings it loses energy in the form of heat from
friction at the fulcrum and brushing against the air. Eventually
the pendulum runs down, finally coming to rest in a state of
equilibrium at the center of its swing.

Going back 500 years, Galileo, watching a swinging lamp in
the cathedral of Pisa, realized the frequency of a pendulum’s beat
depends on its length: The longer the pendulum the lower the
frequency. So the frequency can be varied at will by fixing the
weight at different heights. Most important, as the pendulum
runs down, the frequency stays the same.

Here, therefore, is a perfect way to represent a musical tone,
slowed down by a factor of about a thousand to the level of
human visual perception. For a simple harmonograph two
pendulums are used to represent a harmony, one with the
weight kept at its lowest point, while the weight on the other is
moved to wherever it will produce the required ratio.

As we shall see, the harmonograph combines these two
vibrations into a single drawing, just as two musical tones
sounded together produce a single complex sound.

16
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Interval Aw)rox. Diatonic Length Freq.
Name ote  Rato (em) (%)

Octave (¢4 2:1 20 66.0

The theoretical length of the variable pendulum
that will produce each harmony can be
calculated, for the frequency of a pendulum 1
varies inversely with the square root of its i Maj. 7th B 158 228 628
length. T.Ivu'sl means that while the frequency ] Min 7th B 95 247 594
doubles within the octave, the length of the H

pendulum is reduced by a factor of four. . Maj. 6th A 53 288 558
Figures are given for a pendulum 32 inches Min. 6th ~ G* 85 312 336
(80 cm.) long, a convenient length for a har- 1 Sth G 32 356 503

monograph. These theoretical markers provide
usg ul “sighting shots” for most of the ﬁznrr;zc»- H 4th E i3 50 447
nies.  Note that the pendulum length is mea- H . ) A )
sured from the fulerum to the center of the Maj.3rd - E 54 512 419
weight. H Min.3rd  E’ 65 556 402
2nd D 98 632 377
Halftone C' 1615 703 357

Unison c 1:1 80 33

When a pendulum is pulled back and then released, the
weight tries to fall toward the center of the Earth, accelerating
as it does so. As the pendulum runs down, the rate of
acceleration, and so the speed of travel, is reduced, but in
equal proportion to the distance of travel.

The result is that the period (the time taken for two beats)
or the number of periods in a given unit of time (the
frequency) remains unchanged. In the picture to the left the
[frequencies of beats x and y are the same.

For the pendulum formula, see page 53.
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TwoO HARMONOGRAPHS

lateral and rotary

In the simplest version of the harmonograph two pendulums are
suspended through holes in a table, swinging at right angles to
one another. Projected above the table, the shaft of one
pendulum carries a platform with a piece of paper clipped to it,
while the shaft of the other pendulum carries an arm with a pen.

As the pendulums swing, the pen makes a drawing that is the
result of their combined motion (opposite, left side). Both pen-
dulums begin with the same length, one is then shortened by
sliding the weight upward and securing it with a clamp at various
points. The harmonic ratios can be displayed in turn.

By using three pendulums, however, two circular, or rotary,
movements can be combined, with fascinating results (opposite,
right side). Two of the pendulums swing at right angles as before,
but are now both connected by arms to the pen, which in all
rotary designs describes a simple circle.

Situated under the circling pen, the third and variable
pendulum is mounted on gimbals, a device familiar to anyone
who has had to use a compass or cooking stove at sea. Here it
acts as a rotary bearing, enabling the pendulum carrying the table
to swing in a second circle under the pen. As the pen is lowered
the two circles are combined on the paper.

A further source of variation is also introduced here, for the
two circular motions can swing in the same (concurrent) or
opposite (countercurrent) directions, producing drawings with
very different characteristics.

18
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Two harmonographs and some of the simple patterns they draw.

monograph and its drawings (concurrent and countercurrent).
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SIMPLE UNISON—I:1

and the arrow of time

The simplest harmonograph drawing is produced when both
pendulums are the same length and the table is stationary. With
the pen held off the paper both pendulums are pulled back to
their highest points. One is released, followed by the other
when the first is at its midpoint. The pen is then lowered onto
the paper to produce a circle developing into a single spiral.

If the two pendulums are released together then the result will
be a straight diagonal line across the paper, the “closed” phase
of the harmony, as opposed to the circular “open” phase. At
intermediate phase points elliptical forms appear (below).

The running-down of harmonograph pendulums is an exact
parallel to the fading of musical notes produced by plucked
strings, and can also be thought of as graphically representing the
“arrow of time” (opposite), with the unchanging ratios of the
frequencies representing the eternal character of natural law.
The characteristics of the drawings result from the meeting of
the running-down process with the laws represented by the
various frequency ratios. We see that music, like the world, is
formed from unchanging mathematical principles deployed in

time, creating complexity, variety, and beauty.




The inexorable direction of change, linked to the asymmetry of time (before-now-after), was vividly
described by the scientist Arthur Eddington (1882—1944) as “the arrow of time.” Throughout the
process of continuing universal degradation, the dwindling stock of useful energy encounters a
hierarchy of fixed physical laws conforming to mathematical formulas, and from the interaction of
these unchanging laws with the arrow of time comes a changing world of astonishing complexity,
variety, and beauty. The pendulum runs down_from a state of disequilibrium to one of equilibrium,
and the same is true, we are told, of the universe, the ultimate closed system. From a state of extreme
disequilibrium it plunged via the Big Bang toward its future ultimate state of utterly dark, frozen
equilibrium. Between the beginning and the end there is a continual, cumulative transformation of

useful energy, capable of forming temporary structures and causing events, into useless energy forever
lost.



NEAR UNISON

lateral phases and beat frequencies

A source of pleasing variety in harmonograph drawings comes
from small departures from perfect harmonies. This seems to
involve a principle widespread in nature as well as in the work
of many artists. There is a particular charm in the near miss.

An example from music suggests itself here. When two notes
are sounded in near unison, the slight difference in their
frequencies can often add richness or character to the sound.
The two reeds producing a single note in a piano accordian have
slightly different frequencies, the small departure from unison
causing beats, a warbling or throbbing sound (see page 53).

Set the weights for unison and then shorten the variable
pendulum slightly. Swing the pendulums in open phase, pro-
ducing a circle turning into an increasingly narrow ellipse and
then a line. If the pen is allowed to continue, the line will
change into a widening ellipse, a circle, and a line again at right
angles to the first. And so on. The instrument is working its
way through the phases of unison shown on page 20.

If the variable pendulum is then further shortened in stages, a
series of drawings like those opposite will be produced. The
repetitive pattern represents beats with increasing frequency as
the discrepancy between the notes widens. Eventually the series
fades into a scribble that is a fair representation of discord,
though even here there is a hint of some higher number pattern.

For most people this fading of visual harmony occurs at about
the same point as the audible harmonies fade.

22






ROTARY UNISON—I:1
eggs and shells

Unison in contrary motion produces a straight line across the
paper, like the closed phase of lateral unison. From concurrent
motion there comes a mere dot that turns into a line struggling
toward the center, pen and paper going around together.

At first this is disappointing. However, changing to near
unison is richly rewarding. In contrary motion come a variety
of beautiful, often shell-like, forms with fine cross hatchings. For
best results lift the pen off the paper well before the pendulums
reach equilibrium.

Surprisingly, from concurrent near-miss motion there come
various spherical or egg-shaped forms. To produce an egg shape
the pen should be lowered when it is dawdling at the center. It
then spirals its way outwards, reaching a limit before returning as
the pendulums run down. Because the lines toward the perimeter
get closer together, the drawing appears three dimensional.
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THE LATERAL OCTAVE—2:1
figure eights and wings

After unison the next harmony to try is the octave. Here there
is a technical difficulty: The variable pendulum has to be very
short, and because of the greater amount of friction involved it
runs down quickly. The trick is to add a weight to the top of
the invariable pendulum, which slows it down (see fitle page).
The variable pendulum can then be longer.

Unfortunately this means that for the octave, and other ratios
where one pendulum is going much faster than the other, the
theoretical markers have to be ignored, and the right point found
by trial and error.

With one pendulum beating twice as fast and at right angles to
the other, the octave in open phase takes the form of a figure
eight (a coincidence), repeated in diminishing size as the pendu-

lum runs down.

If both pendulums are released at the same time to produce the
closed phase, the result is a cup-shaped line that develops into a
beautiful winged form with fine cross-hatchings and interference
patterns. Small adjustments produce striking variations.

The octave is the first overtone (see page 8).
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THE ROTARY OCTAVE—2:1

hearts and triangles

From rotary motion with a 2:1 ratio come some of the most
beautiful of all harmonograph drawings: simple, graceful, and
often surprising. Remember, all that is happening here is that
two circular motions, one almost exactly twice as fast as the
other, are being combined.

Contrary motion produces a trefoil shape with many fine
variations (opposite, right). Starting with a smaller size or amplitude
in the faster rotation produces a triangle, or pyramid.

The octave in concurrent motion produces a heart-shaped
form with a simple inner loop (below, left and opposite, left). Here
there is a link with the ancient tradition of the music of the
spheres, for this is the shape an observer on Uranus would ascribe
to the movement of Neptune, or vice-versa. This is because the
planets orbit the Sun concurrently, Uranus in 84 years and
Neptune in 165, approximately representing an octave.

Near misses in the ratios of rotary drawings set the designs
spinning (opposite, bottom).

28
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THE LATERAL FIFTH—3:2

and the second overtone 3:1

Next to be tried is the harmony of the fifth, intermediate
between the simplicity of unison and octave and the more
complex harmonies that follow.

It will be seen from the open phase drawing opposite that the
fifth has three loops along the horizontal side and two along the
vertical. The number of loops on each side gives the ratio, 3:2.
Looking back at the octave, there are two loops to one, and with
unison there is only one loop, however you look at it. This is
the general rule for all lateral harmonograph ratios, and if a
harmony appears unexpectedly during experiments, it can
usually be identified by counting the loops on two adjacent sides.

The fifth also appears as 3:1, the second overtone, a fifth above
the octave (see open- and closed-phase drawings of 3:1 on page 3).
Drawing ratios outside the octave may require a twin-elliptic
harmonograph (see page 58). The phase-shifted pair below are
stereographic: if you go cross-eyed they will appear three dimen-
sional.
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THE ROTARY FIFTH—3:2

encircled hearts and fives

The loudness of musical tones is represented on the har-
monograph by amplitude, the relative sizes of the two circular
motions. In rotary drawings this is much more important than
phase, which simply orients the whole design on the page.

The third drawing below shows a rotary fifth in contrary
motion where the higher-frequency, faster-moving pendulum
has a much wider swing. In the spiky drawing to its right it is
the other way around. At equal amplitude all lines pass through
the center (see table on page 55).

The top four drawings opposite show rotary forms of 3:2,
concurrent on the left, and countercurrent on the right. The
second row shows the effect of a near miss in the harmony,
which makes the patterns spin.

The lower two images opposite are of the second overtone,
3:1, a fifth above the octave (3:1=2:1x3:2). The concurrent
version 1s on the left, countercurrent on the right.

With concurrent pictures, the number of swirls in the middle
is given by the difference between the two numbers of the ratio.
So the concurrent patterns for the primary musical intervals 2:1,
3:2, 4:3, 5:4, and 5:6 all have a single heart at their center.
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THE FOURTH—4:3

with thirds, sixths, and sevenths

By now it will be evident that each harmony displays its own
distinct aesthetic character. Unison is simple and assertive. The
octave introduces an emphatic flourish, and the fifth, while still
fairly simple, has added elegance.

With the fourth the pattern becomes more complicated,
though the design is still recognizable without counting the
loops. The upper diagram opposite shows the fourth in open
phase, the lower in closed phase. An increasing sophistication
becomes apparent, and some of the closed phase and near-miss
variants have a strange, exotic quality.

Introducing the perfect thirds of diatonic tuning increases the
complexity. The major third (5:4) is found below the fourth, the
interval between them, a diatonic halftone, working out as 4:3-+5:4
=16:15. A fourth and a major third (4:3x5:4) produce the major
sixth, 5:3, a minor third (6:5) below the octave and a minor
whole tone (10:9) above the fifth. Likewise, a fourth and a minor
third (4:3x6:5) create the minor sixth (8:5), a major third (5:4)
below the octave and a halftone (16:15) above the fifth.

A fifth and a major third (3:2x5:4) produce the major seventh,
15:8, while a fifth and a minor third (3:2x6:5) give the minor
seventh, 9:5. These are the elements of the diatonic, or just, scale.
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FURTHER HARMONICS

seven-limit and higher-number ratios

As the numbers in the ratios increase it becomes harder to
distinguish the harmonies one from another at a glance: The
loops have to be counted, and slight variations produce little of
aesthetic value. A typical example, 7:5, is shown opposite top.

Rotary motion produces a series of increasingly complex
drawings, influenced by relative frequency, amplitude, and
direction. In contrary motion the total number of loops equals
the sum of the two numbers of the ratio. With concurrent
motion the nodes turn inward, and their number is equal to the
difference between the two numbers of the ratio.

The contrary drawings below show a fourth (4:3), another
fourth, a major sixth (5:3) and a major third (5:4). The pictures
opposite show unequal amplitude drawings of the perfect
eleventh 8:3 (an octave and a fourth) and the ratio 7:3 which is
found in seven-limit tuning (not covered in this book).

Two octaves and a major third (4:1x5:4) equal 5:1, the fourth
overtone, which differs from four fifths (3:2)* as 80:81, the
syntonic comma (see page 10). In mean tone tuning, popular
during the Renaissance, the fifths were flattened very slightly, to
54 or 1.4953, falling out of tune to please the thirds and sixths.
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AMPLITUDE

circles, polygons, flowers, and another circle

Much variation can be obtained from a rotary ratio by having
unequal sizes in the two circular motions. Opposite we see two
frequencies related by a major sixth (5:3). A lower-frequency
note begins to be influenced by, combines with, and is then
more or less replaced by a higher-frequency one. When the two
notes are at equal volume the lines all pass through the center (see
pages 56-57). Notice that the sequence is not symmetrical.

Below we see the first three overtones. For the spikiest shapes
simply invert the amplitudes. For polygons, square them first.

If you have ever played with a spirograph, the harmony is
determined by the cogging ratio, and it is the amplitude that is
adjusted when you change penholes on the wheel.

Ratio 2:1  Amps. 1:2 Ratio 3:1 Amps. 13 Ratio 4:1 Amps. 1:4

Ratio 2:1.  Amps. 1:4 Ratio 3:1  Amps. 1:9 Ratio 4:1  Amps. 1:16
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TUNING TROUBLES

the Pythagorean comma

Leaving the harmonograph drawings and returning to the prin-
ciples of music, you may have noted that musical intervals do not
always agree with one another. A famous example of this is the
relationship between the octave and the perfect fifth (3:2).

In the central picture opposite, a note is sounded in the middle
at 0, and moved up by perfect fifths (numbered opposite, each turn
of the spiral representing an octave). After twelve fifths it has gone
up seven octaves, but the picture shows that it has overshot the
final octave slightly, and gone sharp. This is because (3/2)12
=129.75, whereas (2)7=128. The difference is known as the
Pythagorean comma, 1.013643—approximately 74:73.

If you kept on spiraling you would eventually discover, as the
Chinese did long ago, that 53 perfect fifths (or Lii) almost exactly
equal 31 octaves. The first five fifths produce the pattern of the
black notes on a piano, the pentatonic scale (see page 50).

The smaller pictures opposite show repeated progressions of
the major third (5:4), the minor third (6:5), the fourth (4:3), and
the whole tone (9:8) all compared to an invariant octave.

[t’s strange. With all this harmonious interplay of numbers you
would have expected the whole system to be a precisely co-
herent whole. It isn’t. There are echoes here from the scien-
tific view of a world formed by broken symmetry, subject to
quantum uncertainty, and (so far) defying a precise compre-
hensive theory of everything. Is this why the near miss is so
often more beautiful than perfection?
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EQUAL TEMPERAMENT
changing keys made easy

Although early tunings enabled many pure harmonic ratios to be
played, it was often hard to move into other keys; all one could
do easily was change mode (see page 52). Musicians often had to
retune their instruments, or use extra notes reserved for specific
scales (classical Indian tuning uses twenty-two notes).

In the sixteenth century a new tuning was developed that
revolutionized Western music and that predominates today.
The octave is divided into twelve equal intervals, each chromatic
semitone being 1.05946 times its neighbor (2 %, roughly 18:17).

Twelve equally spaced notes are arranged in a circle below.
Six (flat) whole tones now make an octave, as do four (very flat)
minor thirds, or three (sharp) major thirds. The Pythagorean
comma vanishes, as do all perfect intervals except the octave. It’s
a clever fudge, slightly out of tune and we hear it every day.

Triads are chords of three notes. Opposite top we see major
and minor triads involving the note C, in the key of C. Use the
master grid (opposite below) to navigate the even-tempered sea,
and place any triad in three distinct keys (after Malcolm Stewart).

whole tones minor thirds major thirds ﬁﬁﬁs
and sevenths and major sixths and minor sixths and fourths
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THE KALEIDOPHONE
squiggles from a vibrating rod

Despite the invention of equal temperament, scientists continued
to investigate pure ratio harmonics. An interesting nineteenth-
century precursor to the harmonograph was the kaleidophone,
invented by Sir Charles Wheatstone in 1827. Like the harmon-
ograph, it displayed images of harmonics.

The simplest version of the device consists of a steel rod with
one end firmly fixed into a heavy brass stand and the other fixed
to a small silver glass bead, so that when illuminated by a
spotlight a bright spot of light is thrown up on a screen placed in
front of it. Depending on how the kaleidophone is first struck,
and then subsequently stroked with a violin bow, a surprising
number of patterns can be produced (a_few are shown opposite).

The kaleidophone does not behave like a string, as it is only
fixed at one end. Like wind instruments, which are normally
open at one end, the mathematics of its harmonics and overtones
are more complicated than the monochord or the harmonograph
(the lower images opposite show some early overtones).

Other versions of the kaleidophone used steel rods with square
or oval cross sections to give further patterns. Wheatstone used
to refer to his invention as a “philosophical toy,” and indeed, as
we look at these patterns, it 1s easy to feel wonder at their simple
beauty.

To make your own kaleidophone, try fixing a knitting needle
in a vise and attaching a silver bead to the free end. Use or make
a light source that projects a bright point of light.
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CHLADNI PATTERNS

vibrating surfaces

So far we have only considered vibrating strings and other simple
systems, but surfaces also can be made to vibrate, and they too
can display harmonic or resonant patterns.

In 1787 Ernst Chladni found that if he scattered fine sand onto
a square plate, and bowed or otherwise vibrated it, then certain
notes, generally harmonics of each other, each gave rise to
different patterns in the sand on the plate. Like the harmono-
graph, other disharmonic tones produced a chaotic mess.
Sometimes he found that further patterns could be created by
touching the side of the plate at harmonic divisions of its length
(shown below). This created a stationary node (see page 8). Later
work revealed that circular plates gave circular patterns,
triangular plates triangular patterns and so on.

The six pictures opposite are from Hans Jenny’s book
Cymatics, one of the seminal texts on this subject. The vibration
picture appears gradually, the sand finding its way to the
stationary parts of the plate as the volume increases.







RESONANCE PICTURES

and how to sing a daisy

A more complete set of Chladni figures is shown opposite, all
two- or fourfold because they were produced on a square plate.

Below, however, we see some circular patterns. They were
photographed in the 1880s by Margaret Watts Hughes, a singer,
on an ingenious device called an eidophone, which consisted of
a hollow base with a membrane stretched across it and a tube
attached to its base with a mouthpiece at the other end. As Mrs.
Hughes sang diatonic scales down the tube, fine lycopodium
powder scattered on the taut membrane suddenly came to life,
bouncing away from some places and staying still at others,
producing shapes that she likened to various flowers.

Yet again, we see recognizable forms and shapes appearing
from simple resonance and harmony.
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APPENDIX A: TUNINGS AND INTERVALS

Do Re Mi Fa So La Ti Do

tonic  halftone  2nd  min3rd  maj3rd 4th tritone 5th min6th maj6th min7th maj7th  octave
|

Eq.Temp.Cems 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

\
8~ — R | 98— 98— 32—

Pentatonic 1/1 9/8 ) 32 . 2716 2/1
© @59 (498.0) 20 L (9059) o)

V ' +
‘ " Perf. Fourths, 4:3
|

|98 08— | 256203 98— 98— 98— 256283
Pythagorean 1/1 9/8 81/64 473 3/2 27/16 243/128 2/1
© (2039) @07.8) (4980 (702.0) (905.9) (11098) (1200)

"’ v—' Perf. Fifths, 3:2
0000’( ‘o‘%o Pc:. F::;hs, 43

|
|

. 98— 109 1615 98— 109~ — 98— L1615~
Distone V1 98 i 45 32 53 58 21
0 (203.9) (386.3) (498.0) (702.0) (884.4) (1088.3)  (1200)

Perf. Fifths, 3:2
Perf. Fourths, 43

P. Maj 3rds, 5:4
! P. Min 3rds, 6:5
|
L 98— 1615109~ | 98— | 16158 _— 98— _— 109~
s B 98 65 43 32 85 95 2

0} 2039)  (3156) (498.0) 7020 8137) 0176 | (120)
{ |

Perf. Fifths, 3:2
Perf. Fourths, 43

P, Maj 3rds, 5:4
P. Min 3rds, 6:5
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SELECTED MUSICAL INTERVALS

9 p ‘ Mi Fa
47243 J 75&24
10 10/
9%
Interval Cents.  Bame 65 3156 Perfect Minor Third
11 0 Unison 5:4 3863 Perfect Major Third
32805:32768 2.0 Schisma 81:04 4078 Pythagorean Major Third
2048:2025 19.6 Diaschisma 43 4980  Perfect Fourth
81:80 215 Syntonic Comma 75 5825 Septimal Tritone
531441:524288 235 Pythagorean Comma 45:32 5902 Diatonic Tritone
128:125 411 Diesis 729:512 6117 Pythagorean Tritone
25:24 70.7 Minor Diatonic Halfione 32 7020 Perfect Fifth
256:243 90.2 Leimma, Pythag. Halftone 128:81 7922 Pythagorean Minor Sixth
135:128 922 Major Chroma 85 813.7  Diatonic Minor Sixth
16:15 1117 Major Diatonic Halftone 53 8844 Perfect Major Sixth
2187:2048 1137 Apotome 27:16 9059 Pythagorean Major Sixth
7:25 1332 Large Leimma 7:4 968.8  Harmonic Seventh

109 1824 Minor Whole tone 169 996.1  Pythagorean Minor Seventh
98 2039 Major Whole tone 9:5 1017.6  Diatonic Minor Seventh
8:7 2312 Septimal Whole tone 15:8 10883 Diatonic Major Seventh
76 2669  Septimal Minor Third 243:128 1109.8  Pythagorean Major Seventh

3227 2941 Pythag. Minor Third %1 1200 Octave

Schisma
3280332768

b\\ =
2524
135/12
21RTA20HE
25—

Like the off-center division of the octave into fifths and fourths, sharps are not in fact flats, giving rise to five more
notes, making seventeen in all (found in Middle-Eastern tunings). More completely, we may think of the seven notes
of the scale as moving across twelve “regions” of the octave, falling into the twenty-two positions of Indian tuning.
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APPENDIX B: MODES AND EQUATIONS

c| d]|e
Modern The S ;o Ancient
te Seven Modes of Antiqui ;
Names f ity Greek Names
| 1 1 ov 1 1 1 . -
Jonian NN TN ¢ d ef g a be Lytfian
Major do re mifa so la tido 1 2 34 5 6 78
1o 1 1 1 4 - . = )
Dorian NN T d e f g a bc d Tﬁ'ygmn
re mifa so la tido re 1 23% 4 5 67 8
w1 1 1w 1 ) i
’me;gian FEIE TN N RSl DU O ef g a be d e Dorian
= mifa so la tido re mi 12 3% 4 56 7 8
1 1 1w 1 1w 7 > -
Lydian R T I e T N f g a bec d ef Syntofyr[ian
i fa so la tido re mifa 12 3 45 6 78
1 1 iy 1 > & iy 1 ' =
Myxofyd]an v 7 g a be d of g1 gonign
& so la tido re mifa so 1 2 34 5 67 8
73 1w 1 1w 1 1 . . F .
 Aeolian ANANAAANAN a be d ef g al| gefan
Natural Minor la tido re mifa so la 1 23 4 56 75 8
Y2 1 1 i 1 d 1 C -~ -
Locrian ATV be d ef g a b Myxolydian
tido re ml‘fa so la ti 12 3 45 6 75 2

The white notes on a piano give the seven notes of the seven modes of ancient Greece.
Medieval transcription errors have left us with modern names that don’t fit the ancient
ones. Each mode, or scale, has its own pattern of whole tones and halftones, only two
surviving as our major and natural minor scales.

Other scales include modal pentatonics that forbid semitones, the harmonic minor with

its minor 3rd and 6th, 1 2 3b 4 5 6b 7 8, and many others.
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The ratios and intervals in this book concern frequencies, normally expressed as cycles per
second, or Hertz. Classical tuning sets C at 256 Hz. Modern tuning is higher, fixing A
at 440 Hz. The period T of a wave is the reciprocal of its frequency f. T=1/f.

The speed of sound in dry air is roughly 331.4+0.6 T, m/s, where T is the temperature
in degrees celsius. Its value at room temperature, 20°C, is 343.4 m/s.

Gravitational acceleration on Earth, g, is 9.807 m/s2.

Frequency of a 1 gravitational acceleration
pendulum P pendulum length

Fundamental frequency string tension

of a tensioned string 2 X string Imgth string mass = string length
Resonant frequency speed q sound area of opening

of a cavity with an opening volume of cavity x length of opening

Fundamental frequency of speed of sound

an open pipe or cylinder 2 x length of cylinder
The beat frequency between fi and f2 is the difference between them, fj = f2 - fi.

The ratio a:b converts to cents (where a > b): (log(a)-log(b)) x (1200 = log2).
To convert cents into degrees multiply by 0.3.

Clapping in front of a rise of steps produces a series of echoes with a perceived frequency
equal to v/2d, where v is the speed of sound, and d is the depth of each step. Clapping

in a small corridor width w produces a frequency v/w.

The arithmetic and harmonic means are

. Q . . 1
central to Pythagorean number theory. 6 : g = 9 2 12
The arithmetic mean of two frequencies a . A+B . 2ARB ; 3B
separated by an octave produces the fifth 2 A+B
between them (3:2), the harmonic mean a . Arithmetic .. Harmonic . B
© Mean " Mean

producing the fourth (4:3).
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APPENDIX C: TABLES OF PATTERNS

Overtone and simple ratio harmonics are shown below and opposite, arranged in order
of increasing dissonance down the page. Open phase drawings display their ratio as the
number of loops counted across and down. To find the ratio of a rotary drawing, draw
both forms, concurrent (both circles in the same direction) and contrary (in opposite
directions). Count the loops in each, add the two numbers together and divide the total
by two. This gives the larger ratio number. Subtract this from the contrary total to give
the lower ratio number. Rotary figures for the ratio a:b will have b—a loops when both
circles are concurrent, and a+b loops when they are contrary.

The designs shown here were all made with equal amplitudes.
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APPENDIX D: BUILDING A
HARMONOGRAPH

[ g \
P
‘ o 'm
[ /
\ v
| s
\ K
I s Table
/ Gimbals Clamp
(I Pen \,
|, e Lever
A 5= J ‘
|
| .

Anyone seriously interested in making a har-
monograph should consider going straight for
the three-pendulum model.

The table must be highly rigid and firm on
the floor, otherwise the movements of the
weights will be distorted. I suggest it should be
about 36 inches (90 cm) above the floor, with
a tabletop 24 x 12 inches (60 x 30 c¢m) for two
pendulums, 24 x 24 inches (60 x 60 c¢m) for
three, and about % inch (2 cm) thick with an
apron all round, about 3% inches (8 cm) deep.

The legs should be about 2% inches (6 ¢cm)
square, splayed outward and pointed at the
bottom. One way of achieving the splay is to fix
wood or metal brackets in the corners under the
table on each side of the diagonals and bolt the
legs between them. After adjusting the legs to
give the correct splay they can then be fixed in
position with screws through the apron.

To save space, cut the tabletop as illustrated
by the dotted line. Three legs are not quite as
stable, but work fairly well.

The platform carrying the paper should be light
and rigid, and fixed to the pendulum with a coun-
tersunk screw. Make the platform about 8% x 6
inches (22 x 15 ¢m) to hold half an 8% x 11-inch
sheet secured by a rubber band or small clip.

All sizes suggested are maximum, but a scaled-
down version will still work if it is carefully made.

If you are tempted to make a harmonograph,
start with the weights, for the instrument will
only be satisfactory if these are really heavy and
yet easy to adjust. Itisa good idea to make about
ten, around 4 pounds (2 kilos) each, so the load-
ings can be varied. They should be about 3%
inches (8 cm) in diameter, with a central hole, or
with a slot for easier handling. Either cast them
yourself from lead or ready-mixed cement or
have them made by a metal shop or plumber.

The shafts should be made from wood dowel,
about /4 inch (1.5 cm) in diameter (metal rods are
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liable to bend, distorting the drawings), marked
off in inches.

Clamps can be obtained from suppliers of
laboratory equipment. For some of the
drawings top weights are needed, held in place
by clamps. Clamps can also be added to pen-
dulum tops for fine tuning, with one or more
metal washers added.

The simpler kind of bearing consists of brass
strips bolted into a slot in the pendulum and filed
to sharp edges to rest in grooves on each side.

In a bearing involving less friction the
pendulum is encased at the fulcrum in a
horizontal block of hardwood with vertical
bolts on cach side filed to sharp points and
resting in grooves in metal plates. If drilling
the large hole in the block is too difficult, it
can be made in two halves, each hollowed out
to take the shaft and bolted together.

Rotary motion needs gimbals. Here the
grooves for the pendulum are filed in the upper
side of a ring (c.g. a key ring) while the under
side has grooves at right angles to the upper
ones. The lower grooves fit on two projecting
sharp edges (brass strips), each enclosed between
two pieces of wood fixed to the table. With the
alternative bearing a large flat washer should be
used with depressions to take the sharp points.

Pen arms should be as light as possible to
minimize restraint. They are casily made from
balsa wood strips (sold at model-making shops),
using glue and Scotch tape. For two pendulums
the arm can be fastened to the shaft with
pinched-off needles, and the pen jammed into a
hole at the other end. For three pendulums the
side pieces on the arm should enclose its shaft
firmly but not too tightly and be held gently
with a thin rubber band. One of the arms holds
the pen, while the other is held by protruding
needles pushed in backward and secured
(gently) at both ends by the rubber bands.
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An additional fitting is needed to lock a
rotary pendulum so that the instrument can be
used with just the two single-axis pendulums.
This can be done by mounting two brackets on
the table near the rotary pendulum with holes
to take a long horizontal bolt (slightly to one
side) to which the shaft can be clamped.

Pens should be fine, light, and free-flowing.
Most stationers and shops selling draftsmen’s

and artists’ materials offer a variety (avoid ball
point or thick fiber pens). For best results use
shiny art paper and ordinary copier paper for
preliminary experiments.

v @ If the pen is left on the paper to the end there

is usually an unsightly blob. To avoid this,
mount a short pillar on the table with an

adjustable lever carrying a piece of thin dowel

placed under the pen arm. By raising the dowel

gently the pen is lifted off the paper without

jogging it. This device should also be used

before the pen is lowered to the paper. By

watching the pen you can see what pattern is

being made, and nudge it one way or the other
by pressure on the pendulums.

For ratios outside the octave, such as 4:1,

you may need to try another harmonograph

such as Goold’s twin-elliptic pendulum (left).
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Music is one of the oldest and most universal of the ancient Arts,
yet few people understand what the elements of harmony really are
and how they actually fit together, or sometimes don’t quite.

In this charming little book Anthony Ashton uses a Victorian device
called Harmonograph to tell the story of Harmony and the intervals
in the scale. With useful appendices and exquisite line drawings
this is a unique and original introduction to this magical subject.

"Beautiful" - London Review of Books
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